Fixed Point Math version 1.2
Sean Tasker (slip) – slip@ice-d.com
www.ice-d.com
What is fixed point?
Fixed point maths is a way of representing numbers with a fractional part without having to use floating point variables. I’ll give you a simple diagram.
BIT: 0 1 2 3 4 5 6 7.8 9 A B C D E F

|_____________|.|_____________|

 |

 |

 Whole Number

Fractional

 Portion

 Portion

This is an example of a fixed point number format for a 16bit unsigned integer. The format is known as 8.8, as the first 8 bits represent the whole part of the number and the last 8 bits represent the fractional part of the number. There are other formats; common formats are 16.16, 8.8, 24.8… etc. It’s really up to you what format you use, you could use 14.2 if you wanted to.

The reason this is called fixed point is because the decimal place does not change position; it is a fixed point. Floating point numbers on the other hand don’t have a specific position of the decimal place.
Why is this useful?
Using a fixed point number system today in modern computers is almost pointless…. Well so it is said. The reason is because nowadays we have very fast FPU’s which do floating point calculations faster than we could do fixed point math. That’s how the story goes anyway, but that isn’t the case with the GBA or other devices with no FPU.
Fixed point math can be used instead of floating point. So fixed point math is useful for a system that do not have fast floating point capabilities. Most of the time the whole part of a number can be used as a final result, for example when talking about screen co-ordinates you don’t say put a pixel at (24.7,33.2), it would simply be (24,33).
How can we use fixed point?
To make the problem a bit simpler lets look at an example with out our normal base 10 number system. Say we had the number 123.45; the whole part of out number is 123 where the fractional is .45. The idea of a fixed point number is to make the fractional portion of the number part of the whole number portion. We want to make the fractional portion, .45, part of the whole number portion. If we write 123.45 as 12345.00 you can see that we’ve made the fractional number portion part of the whole number portion. All we did was multiply 123.45 by 100, which gave us 12345.00. Now we can store 12345 as an integer value and don’t need to use float. We can get our original value by reversing the process. If we divide by 100 instead of multiply. If the number was 12.345 we would multiply and divide by 1000, easy so far right?

We could have multiplied and divided by any number we chose as long as it “moved” the fractional portion to the whole number potion. Though it would be silly choosing a number in which we had no fast was of multiplying and/or dividing. So we choose a number with the base 2 because we can multiply and divide very quickly by doing a binary bit shift.

Bit shift?? For those who don’t know what bit shifting is… it’s the process of moving all the bits in a binary string either left or right. For example, say we had the number 5. This in binary is 0101. If we were to move all the bits over to the left by one, we would have 1010. Which you guessed it, is 10. So shifting left by one multiplies by 2. Performing a right shift is the reverse, say we had 10, right shift by one, our result is 0101, which is 5 =). Hence shifting more then once will multiply/divide by a power of 2, i.e. left shift by 3 will multiply by 2 to the power 3 (2³) which is 8. Bit shifting is done in C/C++ using << for left shifting and >> for right shifting.
Now that we know we can bit shift to multiply and divide we now know we can simply multiply by a power of 2 quite quickly. Let’s put all this together in an example by using a 16.16 fixed point number.

Say we had the number 123.45 and wanted to represent this in a 16.16 format this is what we could do in C or C++ to convert it.

unsigned long int ourFixedNumber;

float ourFloat = 123.45;

ourFixedNumber = (unsigned short int)(ourFloat*(1<<16));

All we have done is multiply our floating point number (ourFloat) by 65535 which is 1 shifted 16 places to the left. Our number 123.45 then becomes 8090295.75 but because integers don’t hold decimal places our number simply becomes 8090295. You may be thinking we are losing precision; you are right but the amount is very small as I’m about to show you.

We have our 16.16 fixed point number 8090295 which represents 123.45. To convert back to a floating point value we do the reverse as we did above.

unsigned long int ourFixedNumber = 8090295;

float ourFloat;

ourFloat = (float)(ourFixedNumber>>16);

By shifting our fixed point number by 16 places to the right we convert our value back to the original value. This is the same as dividing by 65535, hence 8090295 / 65535 = 123.44998855573357747768368047608, which as you can see is very close to our original value, so close in fact in most cases there isn’t anything to worry about.

Fixed point operations

Now you know how to convert from a float to a fixed point number and back again you need to know a few things about the four operations addition, subtraction, multiplication and division, on fixed point numbers.

Addition and subtraction
Luckily we don’t need to do anything extra to our numbers in order for this to work correctly. You can simply add or subtract two or more fixed point numbers of the same format together without a worry. But if you want to add say for example the number 31 to a fixed point number you must convert 31 into fixed point. It is done in the same way as described above. Because 31 on its own could be an integer, you can simply shift left.

eg for our example above to add 31 to our fixed point number 8090295.

ourFixedNumber += 31<<16;
Similarly the same thing applies to subtraction.

Multiplication

Multiplication is slightly different. In stead of having both your numbers as fixed point numbers one must be a fixed point number and the other must be a normal number. For example if we were to take our fixed point number from earlier (8090295) and we wanted to multiply that by 3 all we have to do is the following.

ourFixedNumber*=3;

This is pretty simple. But you run into a problem when you want to multiply a fixed point number by a number which has decimal places. The reason we don’t always multiply two fixed point numbers together is we run the risk of causing an overflow. For example, Say we wanted to multiply our number by 3.4, which we can’t without using floats. In our case we would shift our number 8090295 16bits to the right, in order to give us the whole number portion of our number then multiply it by the fixed point equivalent of 3.4 which is 216265 (with the decimal place dropped off).
If we were to multiply our two values 8090295 and 216265 we would get the result 1749647648175 which if you were to notice would cause an overflow with a 32bit integer, you would have to use a 64bit integer type. Let’s expand that idea for a moment. Say are integer types were 64bits (which would mean our fixed point format would be 48.16) and performed the multiplication as we said and got our result 1749647648175, this result is not a 48.16 format, it is actually a 32.32 fixed point number, we can however convert this back to our 48.16 point format by shifting right 16 bits. 16 bits because, shift amount = abs(current fractional size – desired fractional size), i.e. 32 – 16 = 16.
Unless you have a large number of bits to work with you will just have to decide weather the multiple or the multiplier is to be shifted. Otherwise you can just multiply the two fixed point numbers together then shift right by your fractional precision size, as mentioned with 64bit integers. This is usually the case with 24.8 fixed point numbers.
Division

Division is another slightly difficult operation in comparison to addition and subtraction. In order to divide you must have the denominator a non-fixed point value. This once again gives you a problem with precision like multiplication. The issue is slightly different however; it comes with a slight advantage.
Because the denominator must be the non-fixed point value you can’t simply divide by a fractional value. In order to do this you’ll have to convert the denominator to a fixed point, and change the precision of your numerator to twice the precision of its current state.
That can cause a problem for some fixed point formats, resulting in losing part of your whole part of the number. This can be overcome however by using a different precision for your denominator. For example to divide a 16.16 fixed point number by 3.3 as a fixed point, it may not be necessary to use a 16.16 precision for 3.3. In that case you could use a 24.8 fixed point format. In doing so would mean you would not have to shift your numerator and risk losing part of your whole part but you still get to multiply by 3.3, though not quite as precise.
Your result however would not be your 16.16 fixed point format; it would be a 24.8 format. To convert it to a 16.16 value you can left shift 8 bits, can you see a pattern here? The number of bits to shift = abs(current fractional size - desired fractional size). You may note something going on though. If you wanted the same precision for the denominator as the numerator but did not want to risk losing the whole part of your numerator then you can use the same precision then shift your result. This is the advantage I was talking about.
When it comes to dividing you can obtain the final whole part of your number by dividing the numerator by a denominator of the same precision. If say you needed the final integer whole part of your number and the last operation you performed on your number was a division you can avoid performing a right bit shift by dividing the numerator by a denominator of the same precision. For example:

Our fixed point number is going to be divided by 3.3. which is 216265 as a 16.16 fixed point number, 844 as a 24.8 fixed point number.
unsigned short int ourFixedNumber = 8090295;
unsigned short int threePointThree1616 = 216265;
unsigned short int threePointThree248 = 844;
unsigned short int threePointThree = 3;
unsigned short int result1, result2, result3;

result1 = (ourFixedNumber/threePointThree1616)<<16;
result2 = (ourFixedNumber/threePointThree248)<<8;
result3 = ourFixedNumber/threePointThree;
result1 result2 and result3 would all have the final values of 2424795, 2453760 and 2696765 respectively. They appear to be a bit out but if we were to shift by 16bits to the right we would get 37, 37 and 41 respectively. Comparing these to 123.45 / 3.3 = 37.4090 the first two are correct where as it is expected the last one is going to be off because we knocked off the 0.3.
If you noticed if we were to just use the final integer result then result1 did not need to be shifted left 16 bits; result2 could have been shifted right 8 bits to obtain the final integer result; but result3 required a 16bit shift and ended up being out anyway.
Making it easier

It may seem like a lot of work but you can create some simple macros to take care of a lot of the work for you.

//for 16.16 fixed point

#define FLO_TO_FIX1616(f) ((unsigned short int(f*65535)
#define INT_TO_FIX1616(i) (i<<16)
#define FIX1616_TO_FLO(f) ((float)(f)/65535))

#define MUL_FIX1616(x,y) ((x*y)>>16)

#define DIV_FIX1616(x,y) ((x/y)<<16)

//for 24.8 fixed point

#define FLO_TO_FIX248(f) ((unsigned short int(f*256)
#define INT_TO_FIX248(i) (i<<8)
#define FIX248_TO_FLO(i) ((float)(i)/256))

#define MUL_FIX248(x,y) ((x*y)>>8)

#define DIV_FIX248(x,y) ((x/y)<<8)

As you can see you could create macros for any fixed point math format you desired.

Final word

I hope now you’ll be able to use fixed point math and have an understanding behind the mechanics of it. I’ve tried to be as clear and detailed as I can. Good luck using fixed point maths =).

Reference
http://www.alistairkeys.co.uk/fixedpt.shtml Date: 14-06-03
http://members.aol.com/form1/fixed.htm
Date: 04-08-03
