Binary Operations and Operators

By Sean Tasker – slip

www.ice-d.com
slip@ice-d.com

written 22nd June 2004


Prerequisites

This document requires you understand the binary number system. However if you don’t but have a rough idea of binary numbers, then this document may help you understand the binary number system a bit (no pun intended ;) better. Feel free to read if you don’t though.
What are Binary operations?
Binary operations can be a very powerful thing to use when programming. In my opinion every programmer, at some stage in their programming life should learn about them. Binary operations involve using operators to manipulate data at a binary level. 
What is an operator?

Plus (+), minus (-), Divide (/) and multiply (*) are all operators. They manipulate numbers in a certain way. While these ones are commonly known, there are another set of operators known as Binary Operators. These operations however operate at the binary level. So when you use these you should think about what is happening to each binary bit in the number.

The Binary Operators

Bitwise AND - &

When talking about ANDing two numbers together we are talking about obtaining a number from two others. This is done by comparing each bit in one number with the bit in another; if they are both 1 then the corresponding bit in our result will be a 1, otherwise the corresponding bit in our result will be 0. For example:

If we AND the two numbers 11 and 26 we would get a result of 10.

We’ll take these two numbers and compare them at the binary level.

Bits
5
4
3
2
1

0
1
0
1
1

11
AND
1
1
0
1
0

26



0
1
0
1
0

10
- Comparing bits 5 first, a 0 and 1 will result in a 0.

- Next we compare bits 4, 1 and 1 result 1.
- Bits 3, 0 and 0 result 0.

- Bits 2, once again 1 and 1 result 1

- And finally bits 1, a 1 and a 0 result a 0.

NOTE: It does not matter which order you compare the bits in, you will still get the same result.
Our operation above can be written as:

11 AND 26
Or in code as

11 & 26
To remember, just think when comparing the bits if this bit AND that bit is 1 then its 1.
Bitwise OR - |

Similar to AND except we say if this bit OR that bit is 1 then our result bit is 1.
For example: Taking our same two numbers 11 and 26
Bits
5
4
3
2
1

0
1
0
1
1

11
AND
1
1
0
1
0

26



1
1
0
1
1

27
In the same way we compare the bits but this time if either bit is a 1 then our result bit is 1.

This be written as:

11 OR 26
Or in code as

11 | 26
Bitwise exclusive or - XOR - ^

Just like AND and OR we compare the bits in our numbers, but this time exclusive or says it can only be OR but not AND.

Our magical demo numbers 15 and 26 ;)

Bits
5
4
3
2
1

0
1
0
1
1

11
AND
1
1
0
1
0

26



1
0
0
0
1

17

As you can see the same rules apply as they do in OR except when our bits are both 1 our result bit is 0.

Our operation above can be written as:

11 XOR 26
Or in code as

11 ^ 26
Bit Shift Left << and Bit Shift Right >>
The operators we’ve looked so far involve two numbers at the binary level; bit shifting though only involves the manipulation of a single number.

Bit shifting is the process of moving all the bits in a binary string to the left or to the right. That is if we were shifting left by one, bit 1 moves to bit 2; bit 2 moves to bit 3; and so on… back at the first bit though there was no bit to move to it, but it becomes 0. Similar Bit Shifting right moves all the bits right by the desired amount. The number on the right hand side of the bit shift operator specifies the amount to shift.

For example: Taking 11 and shifting Left by 1 results in 22.
Bits
5
4
3
2
1

0
1
0
1
1

11


<<
1










1
0
1
1
0

22

In code:
11<<1
Another example:

Bits
5
4
3
2
1

0
1
0
1
1

11


<<
2










1
0
1
1
0

44
In code:
11<<2
And another example (you’ll see why)

Bits
5
4
3
2
1

0
1
0
1
1

11


<<
3










1
0
1
1
0

88


In code:
11<<3
You may have noticed a pattern here. A single shift Left to 11 gave us a result of 22, which is twice of what we had. Shifting 2 times left gave us 44; 4 times what we had. And finally shifting 3 times gave us 88; 8 times what we had. Notice the pattern?

2, 4, 8… The value of each bit in a binary string in reverse order, if we extend this we would have 1, 2, 4, 8, 16, 32, 64, 128, etc times what we originally had. So taking a look at this, we effectively multiply our number by 2 to the power of our number right of the operator (<<).

Similarly Right shifts divide by 2 to the power of our number right of the operator (>>). This brings us to the next section…
Uses of Binary Operations
The uses of binary operations are possibly endless. Here is to name a few.

Masking

AND can be used for extracting part of a number from another. For example: having a 16 bit number we may want only to use the lower 8 bits of this number in another operation. We can obtain this by masking our 16 bit number; this is done by applying AND 255 to our number, because 255 in binary representation is 11111111. An example of this is if each byte of a file represents a colour of a picture but you can only read in 16 bit words, then you will have to separate the two 8 bit words. Quickly this can be done in code like this:

//Separate the upper and lower bytes in a 16 bit word
unsigned short int sixteenBit;
//our sixteen bit word
char lower, upper;



//our two bytes
lower = sixteenBit & 255;

//0000000011111111
upper = sixteenBit & 65280;

//1111111100000000
Flags

It is not uncommon to want to keep track of a certain range of things which simply need two states (Boolean). Instead of using a Boolean variable for each thing it is possible to use only one variable to keep track of more than one thing.

For example:

Each bit in a 16 bit word may be assigned to represent an individual thing. Each bit could then be considered a Boolean (though they aren’t). We can turn each bit on or off as we please by using XOR, or can use OR to just turn the bit on. The number to XOR or OR will correspond to the bit or bits we wish to change state. We can then check each bit by using AND.

Here is some code that demonstrates this:

//Use a 16 bit word as a flag holder

//change and check some flags (bits)

//Define bit values so we don’t have to remember each number

#define BIT01

1

#define BIT02

2

#define BIT03

4

#define BIT04

8

unsigned short int flags=0;
//Our flag holder







//All flags are off

flags = flags ^ BIT01;

//Turn Bit 1 on
flags = flags ^ BIT04;

//Turn Bit 4 on

flags = flags ^ BIT01;

//Turn Bit 1 off
flags = flags ^ BIT08;

//Turn Bit 8 on

//Check some bits

if(flags & BIT01)


printf(“Bit 1 is on”);

else


printf(“Bit 1 is off”);

if(flags & BIT04)


printf(“Bit 4 is on”);

else


printf(“Bit 4 is off”);

You can use your imagination for what use this if for. For example instead of using BIT01, BIT02, etc, you could make names like GOT_BLUE_KEYCARD and OUT_OF_AMMO; Your code would then be more readable by having if(something & OUT_OF_AMMO) instead of if(something & 64).
Using a single variable for multiple things also saves memory.
Optimization with multiplying and dividing

Like I said before shifting left and right multiplies and divides respectively. When speed is a concern and you know you will be multiplying or dividing by a power of two, this when bit shifting becomes useful; it is a lot faster to do a bit shift than a multiply or divide.
Table
Here is a table of what bits result to from what operations.

	Operation
	Bit of left
	Bit of right
	Result

	AND
	1
	1
	1

	AND
	1
	0
	0

	AND
	0
	1
	0

	OR
	1
	1
	1

	OR
	1
	0
	1

	OR
	0
	1
	1

	XOR
	1
	1
	0

	XOR
	1
	0
	1

	XOR
	0
	1
	1


Last note
That’s all there is for now. I hope this has been a help in any way and wasn’t too hard to read. I appreciate feedback so feel free to email me with any or any questions.

Email: slip@ice-d.com
For more tutorials or to request a tutorial head over to ice-development

www.ice-d.com 
3

